EconPapers    
Economics at your fingertips  
 

Using sliced mean variance–covariance inverse regression for classification and dimension reduction

Charles Lindsey (), Simon Sheather () and Joseph McKean ()

Computational Statistics, 2014, vol. 29, issue 3, 769-798

Abstract: The sliced mean variance–covariance inverse regression (SMVCIR) algorithm takes grouped multivariate data as input and transforms it to a new coordinate system where the group mean, variance, and covariance differences are more apparent. Other popular algorithms used for performing graphical group discrimination are sliced average variance estimation (SAVE, targetting the same differences but using a different arrangement for variances) and sliced inverse regression (SIR, which targets mean differences). We provide an improved SMVCIR algorithm and create a dimensionality test for the SMVCIR coordinate system. Simulations corroborating our theoretical results and comparing SMVCIR with the other methods are presented. We also provide examples demonstrating the use of SMVCIR and the other methods, in visualization and group discrimination by k-nearest neighbors. The advantages and differences of SMVCIR from SAVE and SIR are shown clearly in these examples and simulation. Copyright Springer-Verlag Berlin Heidelberg 2014

Keywords: Discrimination; Singular value decomposition; SAVE; SIR; Visualization; SMVCIR (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-013-0460-3 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:29:y:2014:i:3:p:769-798

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-013-0460-3

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:29:y:2014:i:3:p:769-798