Canonical Forest
Yu-Chuan Chen,
Hyejung Ha,
Hyunjoong Kim and
Hongshik Ahn ()
Computational Statistics, 2014, vol. 29, issue 3, 849-867
Abstract:
We propose a new classification ensemble method named Canonical Forest. The new method uses canonical linear discriminant analysis (CLDA) and bootstrapping to obtain accurate and diverse classifiers that constitute an ensemble. We note CLDA serves as a linear transformation tool rather than a dimension reduction tool. Since CLDA will find the transformed space that separates the classes farther in distribution, classifiers built on this space will be more accurate than those on the original space. To further facilitate the diversity of the classifiers in an ensemble, CLDA is applied only on a partial feature space for each bootstrapped data. To compare the performance of Canonical Forest and other widely used ensemble methods, we tested them on 29 real or artificial data sets. Canonical Forest performed significantly better in accuracy than other ensemble methods in most data sets. According to the investigation on the bias and variance decomposition, the success of Canonical Forest can be attributed to the variance reduction. Copyright Springer-Verlag Berlin Heidelberg 2014
Keywords: Canonical linear discriminant analysis; Classification; Ensemble; Linear discriminant analysis; Rotation Forest (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-013-0466-x (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:29:y:2014:i:3:p:849-867
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-013-0466-x
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().