A multi-loss super regression learner (MSRL) with application to survival prediction using proteomics
Jasmit Shah (),
Somnath Datta and
Susmita Datta ()
Computational Statistics, 2014, vol. 29, issue 6, 1749-1767
Abstract:
Even though a number of regression techniques have been proposed over the years to handle a large number of regressors, due to the complex nature of data emerging from recent high-throughput experiments, it is unlikely that any single technique will be successful in modeling all data types. Thus, multiple regression algorithms from the collection of modern regression techniques that are capable of handling high dimensional regressors should be entertained for analyzing such data. A novel approach of building a super regression learner is proposed which can be fit with a training data set in order to make future predictions of a continuous outcome. The resulting super regression model is multi-objective in nature and mimics the performances of the best component regression models irrespective of the data type. This is accomplished by combining elements of bootstrap based risk calculation, rank aggregation, and stacking. The utility of this approach is demonstrated through its use on mass spectrometry data. Copyright Springer-Verlag Berlin Heidelberg 2014
Keywords: Bagging; Rank aggregation; Regression (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-014-0516-z (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:29:y:2014:i:6:p:1749-1767
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-014-0516-z
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().