Generalized data-fitting factor analysis with multiple quantification of categorical variables
Naomichi Makino ()
Computational Statistics, 2015, vol. 30, issue 1, 279-292
Abstract:
In this study, a recently proposed data-fitting factor analysis (DFFA) procedure is generalized for categorical variable analysis. For generalized DFFA (GDFFA), we develop an alternating least squares algorithm consisting of a multiple quantification step and a model parameters estimation step. The differences between GDFFA and similar statistical methods such as multiple correspondence analysis and FACTALS are also discussed. The developed algorithm and its solution are illustrated with a real data example. Copyright Springer-Verlag Berlin Heidelberg 2015
Keywords: Data-fitting factor analysis; Categorical variables; Multiple quantification; Multiple correspondence analysis; FACTALS (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-014-0536-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:30:y:2015:i:1:p:279-292
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-014-0536-8
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().