A GS-CORE algorithm for performing a reduction test on multiple gene sets and their core genes
Tae Yang ()
Computational Statistics, 2015, vol. 30, issue 1, 29-41
Abstract:
Gene-set analysis seeks to identify enriched gene sets that are strongly associated with the phenotype. In many applications, only a small subset of core genes in each enriched gene set is likely associated with the phenotype. The reduction of enriched gene sets to the corresponding leading-edge subsets of core genes is a useful way for biologists to understand the biological processes underlying the association of a gene set with the phenotype of interest. Therefore, we propose a new gene-set analysis that tests the significance of enrichment on multiple gene sets, while simultaneously determining the corresponding leading-edge subsets of core genes. In the proposed analysis, we assigned a newly defined enrichment score to each gene set, and then corrected the statistical significance of the score for multiple testing of many gene sets by controlling the false-discovery rate. Copyright Springer-Verlag Berlin Heidelberg 2015
Keywords: Core genes; Enrichment score; False-discovery rate; Leading-edge subset (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-014-0519-9 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:30:y:2015:i:1:p:29-41
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-014-0519-9
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().