EconPapers    
Economics at your fingertips  
 

Weighted linear regression models with fixed weights and spherical disturbances

Martin Meermeyer ()

Computational Statistics, 2015, vol. 30, issue 4, 929-955

Abstract: In linear regression models weights are usually employed within the framework of generalized least squares (GLS) to deal with heteroscedastic errors. In this paper some aspects of estimation and inference are addressed when the weights are used to give the observations different fixed weights in the estimation process of the parameters while the assumption of spherical (i.e. independent and identically normal distributed) disturbances is maintained. Here, this model is referred to as weighted linear regression (WLR) model. Applications of WLR-type models are discounted least squares, a standard procedure in time series forecasting, geographically weighted regression and local regression. For WLR-models the covariance matrix of the estimated coefficients is substantially different in comparison to the GLS-case in terms of the structure of the unscaled covariance matrix and in terms of the error variance estimator. The expressions valid for the GLS-case are not appropriate in the framework considered here and in fact their application is strongly misleading. The results of a simulation study suggest that in most instances the common distributions can be used as approximations for inferential purposes within the WLR-framework. The results derived in this paper will not only provide new inferential procedures for the mentioned applications but may be also beneficial in other applications as well. The usefulness of the approach is demonstrated by a real data example. Copyright Springer-Verlag Berlin Heidelberg 2015

Keywords: Linear regression; Discounted least squares; Local regession; Geographically weighted regression; Weighted least squares; Error variance estimation (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-015-0572-z (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:30:y:2015:i:4:p:929-955

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-015-0572-z

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:30:y:2015:i:4:p:929-955