Composite quantile regression for single-index models with asymmetric errors
Jing Sun ()
Additional contact information
Jing Sun: Ludong University
Computational Statistics, 2016, vol. 31, issue 1, No 15, 329-351
Abstract:
Abstract For the single-index model, a composite quantile regression technique is proposed in this paper to construct robust and efficient estimation. Theoretical analysis reveals that the proposed estimate of the single-index vector is highly efficient relative to its corresponding least squares estimate. For the single-index vector, the proposed method is always valid across a wide spectrum of error distributions; even in the worst case scenario, the asymptotic relative efficiency has a lower bound 86.4 %. Meanwhile, we employ weighted local composite quantile regression to obtain a consistent and robust estimate for the nonparametric component in the single-index model, which is adapted to both symmetric and asymmetric distributions. Numerical study and a real data analysis can further illustrate our theoretical findings.
Keywords: Composite quantile regression; Single-index model; Asymptotic relative efficiency; Symmetric and asymmetric distributions; Optimal weight vector (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-016-0645-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:31:y:2016:i:1:d:10.1007_s00180-016-0645-7
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-016-0645-7
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().