Boosting in Cox regression: a comparison between the likelihood-based and the model-based approaches with focus on the R-packages CoxBoost and mboost
Riccardo De Bin ()
Additional contact information
Riccardo De Bin: University of Munich
Computational Statistics, 2016, vol. 31, issue 2, No 6, 513-531
Abstract:
Abstract Despite the limitations imposed by the proportional hazards assumption, the Cox model is probably the most popular statistical tool used to analyze survival data, thanks to its flexibility and ease of interpretation. For this reason, novel statistical/machine learning techniques are usually adapted to fit its requirements, including boosting. Boosting is an iterative technique originally developed in the machine learning community to handle classification problems, and later extended to the statistical field, where it is used in many situations, including regression and survival analysis. The popularity of boosting has been further driven by the availability of user-friendly software such as the R packages mboost and CoxBoost, both of which allow the implementation of boosting in conjunction with the Cox model. Despite the common underlying boosting principles, these two packages use different techniques: the former is an adaptation of model-based boosting, while the latter adapts likelihood-based boosting. Here we contrast these two boosting techniques as implemented in the R packages from an analytic point of view; we further examine solutions adopted within these packages to treat mandatory variables, i.e. variables that—for several reasons—must be included in the model. We explore the possibility of extending solutions currently only implemented in one package to the other. A simulation study and a real data example are added for illustration.
Keywords: Cox model; Gradient descent; Mandatory variables; Partial likelihood; Survival analysis (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s00180-015-0642-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:31:y:2016:i:2:d:10.1007_s00180-015-0642-2
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-015-0642-2
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().