Bayesian inference on partially linear mixed-effects joint models for longitudinal data with multiple features
Yangxin Huang () and
Tao Lu
Additional contact information
Yangxin Huang: University of South Florida
Tao Lu: State University of New York
Computational Statistics, 2017, vol. 32, issue 1, No 8, 179-196
Abstract:
Abstract The relationship between viral load and CD4 cell count is one of the interesting questions in AIDS research. Statistical models are powerful tools for clarifying this important problem. Partially linear mixed-effects (PLME) model which accounts for the unknown function of time effect is one of the important models for this purpose. Meanwhile, the mixed-effects modeling approach is suitable for the longitudinal data analysis. However, the complex process of data collection in clinical trials has made it impossible to rely on one particular model to address the issues. Asymmetric distribution, measurement error and left censoring are features commonly arisen in longitudinal studies. It is crucial to take into account these features in the modeling process to achieve reliable estimation and valid conclusion. In this article, we establish a joint model that accounts for all these features in the framework of PLME models. A Bayesian inferential procedure is proposed to estimate parameters in the joint model. A real data example is analyzed to demonstrate the proposed modeling approach for inference and the results are reported by comparing various scenarios-based models.
Keywords: AIDS clinical trial; Bayesian analysis; PLME models; Skew-t distribution; Viral load and CD4 cell count (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s00180-016-0671-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:32:y:2017:i:1:d:10.1007_s00180-016-0671-5
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-016-0671-5
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().