EconPapers    
Economics at your fingertips  
 

Likelihood inference for the destructive exponentially weighted Poisson cure rate model with Weibull lifetime and an application to melanoma data

Suvra Pal () and N. Balakrishnan
Additional contact information
Suvra Pal: University of Texas at Arlington
N. Balakrishnan: McMaster University

Computational Statistics, 2017, vol. 32, issue 2, No 3, 429-449

Abstract: Abstract In this paper, we develop the steps of the expectation maximization algorithm (EM algorithm) for the determination of the maximum likelihood estimates (MLEs) of the parameters of the destructive exponentially weighted Poisson cure rate model in which the lifetimes are assumed to be Weibull. This model is more flexible than the promotion time cure rate model as it provides an interesting and realistic interpretation of the biological mechanism of the occurrence of an event of interest by including a destructive process of the initial number of causes in a competitive scenario. The standard errors of the MLEs are obtained by inverting the observed information matrix. An extensive Monte Carlo simulation study is carried out to evaluate the performance of the developed method of estimation. Finally, a known melanoma data are analyzed to illustrate the method of inference developed here. With these data, a comparison is also made with the scenario when the destructive mechanism is not included in the analysis.

Keywords: Competing cause scenario; Long-term survivors; Maximum likelihood estimates; EM algorithm; Profile likelihood (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s00180-016-0660-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:32:y:2017:i:2:d:10.1007_s00180-016-0660-8

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-016-0660-8

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:32:y:2017:i:2:d:10.1007_s00180-016-0660-8