Nonsingular subsampling for regression S estimators with categorical predictors
Manuel Koller () and
Werner A. Stahel ()
Additional contact information
Manuel Koller: University of Bern
Werner A. Stahel: ETH Zürich
Computational Statistics, 2017, vol. 32, issue 2, No 11, 646 pages
Abstract:
Abstract Simple random subsampling is an integral part of S estimation algorithms for linear regression. Subsamples are required to be nonsingular. Usually, discarding a singular subsample and drawing a new one leads to a sufficient number of nonsingular subsamples with a reasonable computational effort. However, this procedure can require so many subsamples that it becomes infeasible, especially if levels of categorical variables have low frequency. A subsampling algorithm called nonsingular subsampling is presented, which generates only nonsingular subsamples. When no singular subsamples occur, nonsingular subsampling is as fast as the simple algorithm, and if singular subsamples do occur, it maintains the same computational order. The algorithm works consistently, unless the full design matrix is singular. The method is based on a modified LU decomposition algorithm that combines sample generation with solving the least squares problem. The algorithm may also be useful for ordinary bootstrapping. Since the method allows for S estimation in designs with factors and interactions between factors and continuous regressors, we study properties of the resulting estimators, both in the sense of their dependence on the randomness of the sampling and of their statistical performance.
Keywords: Robust regression; MM estimate; S estimate; Resampling; Collinearity; Bootstrap; Dummy variables (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s00180-016-0679-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:32:y:2017:i:2:d:10.1007_s00180-016-0679-x
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-016-0679-x
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().