A non-negative matrix factorization model based on the zero-inflated Tweedie distribution
Hiroyasu Abe () and
Hiroshi Yadohisa ()
Additional contact information
Hiroyasu Abe: Doshisha University
Hiroshi Yadohisa: Doshisha University
Computational Statistics, 2017, vol. 32, issue 2, No 5, 475-499
Abstract:
Abstract Non-negative matrix factorization (NMF) is a technique of multivariate analysis used to approximate a given matrix containing non-negative data using two non-negative factor matrices that has been applied to a number of fields. However, when a matrix containing non-negative data has many zeroes, NMF encounters an approximation difficulty. This zero-inflated situation occurs often when a data matrix is given as count data, and becomes more challenging with matrices of increasing size. To solve this problem, we propose a new NMF model for zero-inflated non-negative matrices. Our model is based on the zero-inflated Tweedie distribution. The Tweedie distribution is a generalization of the normal, the Poisson, and the gamma distributions, and differs from each of the other distributions in the degree of robustness of its estimated parameters. In this paper, we show through numerical examples that the proposed model is superior to the basic NMF model in terms of approximation of zero-inflated data. Furthermore, we show the differences between the estimated basis vectors found using the basic and the proposed NMF models for $$\beta $$ β divergence by applying it to real purchasing data.
Keywords: $$\beta $$ β divergence; EM algorithm; Auxiliary function; Count data (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-016-0689-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:32:y:2017:i:2:d:10.1007_s00180-016-0689-8
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-016-0689-8
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().