EconPapers    
Economics at your fingertips  
 

On the impact of model selection on predictor identification and parameter inference

Ruth M. Pfeiffer (), Andrew Redd and Raymond J. Carroll
Additional contact information
Ruth M. Pfeiffer: National Cancer Institute
Andrew Redd: University of Utah School of Medicine
Raymond J. Carroll: Texas A&M University

Computational Statistics, 2017, vol. 32, issue 2, No 13, 667-690

Abstract: Abstract We assessed the ability of several penalized regression methods for linear and logistic models to identify outcome-associated predictors and the impact of predictor selection on parameter inference for practical sample sizes. We studied effect estimates obtained directly from penalized methods (Algorithm 1), or by refitting selected predictors with standard regression (Algorithm 2). For linear models, penalized linear regression, elastic net, smoothly clipped absolute deviation (SCAD), least angle regression and LASSO had a low false negative (FN) predictor selection rates but false positive (FP) rates above 20 % for all sample and effect sizes. Partial least squares regression had few FPs but many FNs. Only relaxo had low FP and FN rates. For logistic models, LASSO and penalized logistic regression had many FPs and few FNs for all sample and effect sizes. SCAD and adaptive logistic regression had low or moderate FP rates but many FNs. 95 % confidence interval coverage of predictors with null effects was approximately 100 % for Algorithm 1 for all methods, and 95 % for Algorithm 2 for large sample and effect sizes. Coverage was low only for penalized partial least squares (linear regression). For outcome-associated predictors, coverage was close to 95 % for Algorithm 2 for large sample and effect sizes for all methods except penalized partial least squares and penalized logistic regression. Coverage was sub-nominal for Algorithm 1. In conclusion, many methods performed comparably, and while Algorithm 2 is preferred to Algorithm 1 for estimation, it yields valid inference only for large effect and sample sizes.

Keywords: Biased estimates; Post-model selection inference; Finite sample inference; Shrinkage; Variable selection (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00180-016-0690-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:32:y:2017:i:2:d:10.1007_s00180-016-0690-2

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-016-0690-2

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:32:y:2017:i:2:d:10.1007_s00180-016-0690-2