Bayesian inference on longitudinal-survival data with multiple features
Tao Lu ()
Additional contact information
Tao Lu: University of Nevada
Computational Statistics, 2017, vol. 32, issue 3, No 2, 845-866
Abstract:
Abstract The modeling of longitudinal and survival data is an active research area. Most of researches focus on improving the estimating efficiency but ignore many data features frequently encountered in practice. In this article, we develop a joint model that concurrently accounting for longitudinal-survival data with multiple features. Specifically, our joint model handles skewness, limit of detection, missingness and measurement errors in covariates which are typical observed in the collection of longitudinal-survival data from many studies. We employ a Bayesian approach for making inference on the joint model. The proposed model and method are applied to an AIDS study. A few alternative models under different conditions are compared. Some interesting results are reported. Simulation studies are conducted to assess the performance of the proposed methods.
Keywords: AIDS study; Longitudinal data; Measurement error; Missing data; Proportional hazard models; Skew distribution; Survival data; Semiparametric mixed-effects models (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s00180-016-0681-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:32:y:2017:i:3:d:10.1007_s00180-016-0681-3
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-016-0681-3
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().