Bootstrap and permutation tests in ANOVA for directional data
Adelaide Figueiredo ()
Additional contact information
Adelaide Figueiredo: University of Porto
Computational Statistics, 2017, vol. 32, issue 4, No 1, 1213-1240
Abstract:
Abstract The problem of testing the null hypothesis of a common direction across several populations defined on the hypersphere arises frequently when we deal with directional data. We may consider the Analysis of Variance (ANOVA) for testing such hypotheses. However, for the Watson distribution, a commonly used distribution for modeling axial data, the ANOVA test is only valid for large concentrations. So we suggest to use alternative tests, such as bootstrap and permutation tests in ANOVA. Then, we investigate the performance of these tests for data from Watson populations defined on the hypersphere.
Keywords: Hypersphere; Monte Carlo methods; Simulation; Watson distribution; Resampling methods (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s00180-017-0739-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:32:y:2017:i:4:d:10.1007_s00180-017-0739-x
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-017-0739-x
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().