Nonparametric confidence intervals for ranked set samples
Santu Ghosh,
Arpita Chatterjee () and
N. Balakrishnan
Additional contact information
Santu Ghosh: Augusta University
Arpita Chatterjee: Georgia Southern University
N. Balakrishnan: McMaster University
Computational Statistics, 2017, vol. 32, issue 4, No 22, 1689-1725
Abstract:
Abstract In this work, we propose several different confidence interval methods based on ranked-set samples. First, we develop bootstrap bias-corrected and accelerated method for constructing confidence intervals based on ranked-set samples. Usually, for this method, the accelerated constant is computed by employing jackknife method. Here, we derive an analytical expression for the accelerated constant, which results in reducing the computational burden of this bias-corrected and accelerated bootstrap method. The other proposed confidence interval approaches are based on a monotone transformation along with normal approximation. We also study the asymptotic properties of the proposed methods. The performances of these methods are then compared with those of the conventional methods. Through this empirical study, it is shown that the proposed confidence intervals can be successfully applied in practice. The usefulness of the proposed methods is further illustrated by analyzing a real-life data on shrubs.
Keywords: Bootstrap; Edgeworth expansion; Bias corrected and accelerated; Monotone transformations (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-017-0744-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:32:y:2017:i:4:d:10.1007_s00180-017-0744-0
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-017-0744-0
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().