An effective method to reduce the computational complexity of composite quantile regression
Yanke Wu () and
Maozai Tian ()
Additional contact information
Yanke Wu: Guangdong Ocean University
Maozai Tian: Renmin University of China
Computational Statistics, 2017, vol. 32, issue 4, No 8, 1375-1393
Abstract:
Abstract In this article, we aim to reduce the computational complexity of the recently proposed composite quantile regression (CQR). We propose a new regression method called infinitely composite quantile regression (ICQR) to avoid the determination of the number of uniform quantile positions. Unlike the composite quantile regression, our proposed ICQR method allows combining continuous and infinite quantile positions. We show that the proposed ICQR criterion can be readily transformed into a linear programming problem. Furthermore, the computing time of the ICQR estimate is far less than that of the CQR, though it is slightly larger than that of the quantile regression. The oracle properties of the penalized ICQR are also provided. The simulations are conducted to compare different estimators. A real data analysis is used to illustrate the performance.
Keywords: Quantile regression; Composite quantile regression; Computational complexity; Linear programming; Dual problem (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-017-0749-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:32:y:2017:i:4:d:10.1007_s00180-017-0749-8
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-017-0749-8
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().