EconPapers    
Economics at your fingertips  
 

Classical and Bayesian inference in two parameter exponential distribution with randomly censored data

H. Krishna () and N. Goel
Additional contact information
H. Krishna: Ch. Charan Singh University
N. Goel: Ch. Charan Singh University

Computational Statistics, 2018, vol. 33, issue 1, No 10, 249-275

Abstract: Abstract This paper deal with the classical and Bayesian estimation for two parameter exponential distribution having scale and location parameters with randomly censored data. The censoring time is also assumed to follow a two parameter exponential distribution with different scale but same location parameter. The main stress is on the location parameter in this paper. This parameter has not yet been studied with random censoring in literature. Fitting and using exponential distribution on the range $$(0, \infty )$$ ( 0 , ∞ ) , specially when the minimum observation in the data set is significantly large, will give estimates far from accurate. First we obtain the maximum likelihood estimates of the unknown parameters with their variances and asymptotic confidence intervals. Some other classical methods of estimation such as method of moment, L-moments and least squares are also employed. Next, we discuss the Bayesian estimation of the unknown parameters using Gibbs sampling procedures under generalized entropy loss function with inverted gamma priors and Highest Posterior Density credible intervals. We also consider some reliability and experimental characteristics and their estimates. A Monte Carlo simulation study is performed to compare the proposed estimates. Two real data examples are given to illustrate the importance of the location parameter.

Keywords: Random censoring; Maximum likelihood estimation; Bayes estimation; Reliability and experimental characteristics (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s00180-017-0725-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:33:y:2018:i:1:d:10.1007_s00180-017-0725-3

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-017-0725-3

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:33:y:2018:i:1:d:10.1007_s00180-017-0725-3