EconPapers    
Economics at your fingertips  
 

Objective Bayesian model selection approach to the two way analysis of variance

J. A. Cano (), C. Carazo and D. Salmerón
Additional contact information
J. A. Cano: Universidad de Murcia
C. Carazo: Universidad Católica San Antonio de Murcia
D. Salmerón: CIBER Epidemiología y Salud Pública (CIBERESP)

Computational Statistics, 2018, vol. 33, issue 1, No 9, 235-248

Abstract: Abstract An objective Bayesian procedure for testing in the two way analysis of variance is proposed. In the classical methodology the main effects of the two factors and the interaction effect are formulated as linear contrasts between means of normal populations, and hypotheses of the existence of such effects are tested. In this paper, for the first time these hypotheses have been formulated as objective Bayesian model selection problems. Our development is under homoscedasticity and heteroscedasticity, providing exact solutions in both cases. Bayes factors are the key tool to choose between the models under comparison but for the usual default prior distributions they are not well defined. To avoid this difficulty Bayes factors for intrinsic priors are proposed and they are applied in this setting to test the existence of the main effects and the interaction effect. The method has been illustrated with an example and compared with the classical method. For this example, both approaches went in the same direction although the large P value for interaction (0.79) only prevents us against to reject the null, and the posterior probability of the null (0.95) was conclusive.

Keywords: Bayes factors; Intrinsic priors; Linear contrasts (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00180-017-0727-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:33:y:2018:i:1:d:10.1007_s00180-017-0727-1

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-017-0727-1

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:33:y:2018:i:1:d:10.1007_s00180-017-0727-1