Proportion estimation in ranked set sampling in the presence of tie information
Ehsan Zamanzade () and
Xinlei Wang ()
Additional contact information
Ehsan Zamanzade: University of Isfahan
Xinlei Wang: Southern Methodist University
Computational Statistics, 2018, vol. 33, issue 3, No 12, 1349-1366
Abstract:
Abstract Ranked set sampling (RSS) is a statistical technique that uses auxiliary ranking information of unmeasured sample units in an attempt to select a more representative sample that provides better estimation of population parameters than simple random sampling. However, the use of RSS can be hampered by the fact that a complete ranking of units in each set must be specified when implementing RSS. Recently, to allow ties declared as needed, Frey (Environ Ecol Stat 19(3):309–326, 2012) proposed a modification of RSS, which is to simply break ties at random so that a standard ranked set sample is obtained, and meanwhile record the tie structure for use in estimation. Under this RSS variation, several mean estimators were developed and their performance was compared via simulation, with focus on continuous outcome variables. We extend the work of Frey (2012) to binary outcomes and investigate three nonparametric and three likelihood-based proportion estimators (with/without utilizing tie information), among which four are directly extended from existing estimators and the other two are novel. Under different tie-generating mechanisms, we compare the performance of these estimators and draw conclusions based on both simulation and a data example about breast cancer prevalence. Suggestions are made about the choice of the proportion estimator in general.
Keywords: Imperfect ranking; Isotonic estimation; Maximum likelihood; Nonparametric estimation; Ranking tie; Relative efficiency (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s00180-018-0807-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:33:y:2018:i:3:d:10.1007_s00180-018-0807-x
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-018-0807-x
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().