EconPapers    
Economics at your fingertips  
 

Bayesian time series regression with nonparametric modeling of autocorrelation

Tanujit Dey (), Kun Ho Kim () and Chae Young Lim ()
Additional contact information
Tanujit Dey: The Cleveland Clinic
Kun Ho Kim: Hanyang University
Chae Young Lim: Seoul National University

Computational Statistics, 2018, vol. 33, issue 4, No 7, 1715-1731

Abstract: Abstract Series models have several functions: comprehending the functional dependence of variable of interest on covariates, forecasting the dependent variable for future values of covariates and estimating variance disintegration, co-integration and steady-state relations. Although the regression function in a time series model has been extensively modeled both parametrically and nonparametrically, modeling of the error autocorrelation is mainly restricted to the parametric setup. A proper modeling of autocorrelation not only helps to reduce the bias in regression function estimate, but also enriches forecasting via a better forecast of the error term. In this article, we present a nonparametric modeling of autocorrelation function under a Bayesian framework. Moving into the frequency domain from the time domain, we introduce a Gaussian process prior to the log of the spectral density, which is then updated by using a Whittle approximation for the likelihood function (Whittle likelihood). The posterior computation is simplified due to the fact that Whittle likelihood is approximated by the likelihood of a normal mixture distribution with log-spectral density as a location shift parameter, where the mixture is of only five components with known means, variances, and mixture probabilities. The problem then becomes conjugate conditional on the mixture components, and a Gibbs sampler is used to initiate the unknown mixture components as latent variables. We present a simulation study for performance comparison, and apply our method to the two real data examples.

Keywords: Autocorrelation function; Whittle likelihood; Bayesian framework; Gaussian process prior (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00180-018-0796-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:33:y:2018:i:4:d:10.1007_s00180-018-0796-9

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-018-0796-9

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:33:y:2018:i:4:d:10.1007_s00180-018-0796-9