Simulation of Student–Lévy processes using series representations
Till Massing ()
Additional contact information
Till Massing: University of Duisburg-Essen
Computational Statistics, 2018, vol. 33, issue 4, No 5, 1649-1685
Abstract:
Abstract Lévy processes have become very popular in many applications in finance, physics and beyond. The Student–Lévy process is one interesting special case where increments are heavy-tailed and, for 1-increments, Student t distributed. Although theoretically available, there is a lack of path simulation techniques in the literature due to its complicated form. In this paper we address this issue using series representations with the inverse Lévy measure method and the rejection method and prove upper bounds for the mean squared approximation error. In the numerical section we discuss a numerical inversion scheme to find the inverse Lévy measure efficiently. We extend the existing numerical inverse Lévy measure method to incorporate explosive Lévy tail measures. Monte Carlo studies verify the error bounds and the effectiveness of the simulation routine. As a side result we obtain series representations of the so called inverse gamma subordinator which are used to generate paths in this model.
Keywords: Lévy process; Student t distribution; Sample path simulation; Pure jump process; Numerical inversion; Simulation study (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s00180-018-0814-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:33:y:2018:i:4:d:10.1007_s00180-018-0814-y
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-018-0814-y
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().