Pseudo-Bayesian D-optimal designs for longitudinal Poisson mixed models with correlated errors
Hong-Yan Jiang () and
Rong-Xian Yue ()
Additional contact information
Hong-Yan Jiang: Shanghai Normal University
Rong-Xian Yue: Shanghai Normal University
Computational Statistics, 2019, vol. 34, issue 1, No 4, 87 pages
Abstract:
Abstract This paper is concerned with the problem of pseudo-Bayesian D-optimal designs for the first-order Poisson mixed model for longitudinal data with time-dependent correlated errors. A standard approximate covariance matrix of the parameter estimation is obtained based on the quasi-likelihood method. Furthermore, to overcome the dependence of pseudo-Bayesian D-optimal designs on the choice of the prior mean, a hierarchical pseudo-Bayesian D-optimal designs based on the hierarchical prior distribution of unknown parameters is proposed. The results show that the optimal number of time points depends on both the interclass autoregressive coefficients and different cost constraints. The relative efficiency of equidistant designs compared with the hierarchical pseudo-Bayesian D-optimal designs is also discussed.
Keywords: Quasi-likelihood method; Estimating equation; Repeated measures; Hierarchical design; Longitudinal data (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-018-0834-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:34:y:2019:i:1:d:10.1007_s00180-018-0834-7
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-018-0834-7
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().