High dimensional two-sample test based on the inter-point distance
Shin-ichi Tsukada ()
Additional contact information
Shin-ichi Tsukada: Meisei University
Computational Statistics, 2019, vol. 34, issue 2, No 9, 599-615
Abstract:
Abstract The multivariate two-sample problem has been extensively investigated, and various methods have been proposed. However, most two-sample tests perform poorly when applied to high-dimensional data, and many of them are not applicable when the dimension of the data exceeds the sample size. We reconsider two previously reported tests (Baringhaus and Franz in Stat Sin 20:1333–1361, 2010; Biswas and Ghosh in J Multivar Anal 123:160–171, 2014), and propose two new criteria. Simulations demonstrate that the power of the proposed test is stable for high-dimensional data and large samples, and the power of our test is equivalent to that of the test by Biswas and Ghosh when the covariance matrices are different. We also investigate the theoretical properties of our test when the dimension tends to infinity and the sample size is fixed, and when the dimension is fixed and the sample size tends to infinity. In these cases, the proposed test is asymptotically distribution-free and consistent.
Keywords: Nonparametric test; Two-sample; High-dimensional data; Inter-point distance (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s00180-017-0777-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:34:y:2019:i:2:d:10.1007_s00180-017-0777-4
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-017-0777-4
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().