EconPapers    
Economics at your fingertips  
 

Some new statistical methods for a class of zero-truncated discrete distributions with applications

Guo-Liang Tian, Xiqian Ding, Yin Liu () and Man-Lai Tang
Additional contact information
Guo-Liang Tian: Southern University of Science and Technology
Xiqian Ding: The University of Hong Kong
Yin Liu: Zhongnan University of Economics and Law
Man-Lai Tang: The Hang Seng University of Hong Kong

Computational Statistics, 2019, vol. 34, issue 3, No 19, 1393-1426

Abstract: Abstract Counting data without zero category often occurs in various fields. A class of zero-truncated discrete distributions such as the zero-truncated Poisson, zero-truncated binomial and zero-truncated negative-binomial distributions are proposed in literature to model such count data. In this paper, three main contributions have been made for better studying the zero-truncated discrete distributions: First, a novel unified expectation–maximization (EM) algorithm is developed for calculating the maximum likelihood estimates (MLEs) of parameters in general zero-truncated discrete distributions and an important feature of the proposed EM algorithm is that the latent variables and the observed variables are independent, which is unusual in general EM-type algorithms; Second, for those who do not understand the principle of latent variables, a unified minorization–maximization algorithm, as an alternative to the EM algorithm, for obtaining the MLEs of parameters in a class of zero-truncated discrete distributions is discussed; Third, a unified method is proposed to derive the distribution of the sum of i.i.d.zero-truncated discrete random variables, which has important applications in the construction of the shortest Clopper–Pearson confidence intervals of parameters of interest and in the calculation of the exact p value of a two-sided test for small sample sizes in one sample problem.

Keywords: EM algorithm; MM algorithm; Shortest confidence intervals; Stochastic representation; Zero-truncated discrete models (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s00180-018-00860-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:34:y:2019:i:3:d:10.1007_s00180-018-00860-0

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-018-00860-0

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:34:y:2019:i:3:d:10.1007_s00180-018-00860-0