EconPapers    
Economics at your fingertips  
 

Estimation of random-effects model for longitudinal data with nonignorable missingness using Gibbs sampling

Prajamitra Bhuyan ()
Additional contact information
Prajamitra Bhuyan: Imperial College London

Computational Statistics, 2019, vol. 34, issue 4, No 12, 1693-1710

Abstract: Abstract The missing data problem is common in longitudinal or repeated measurements data. When the missingness mechanism is nonignorable, the distribution of the observed response and indicators of missingness should be modelled jointly using either ‘shared random-effects model’ or ‘correlated random-effects model’. However, computational challenges arise in the model fitting due to intractable numerical integration involved in the log-likelihood function. We provide alternative modeling of ‘correlated random-effects model’ using latent variables and propose a simple algorithm based on Gibbs sampling for estimation of associated parameters. The method is illustrated through simulation and the analysis of a real data set arising from an autism study.

Keywords: Latent variable; Legendre polynomial; Time-varying coefficients; MCMC; Non-informative prior (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00180-019-00887-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:34:y:2019:i:4:d:10.1007_s00180-019-00887-x

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-019-00887-x

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:34:y:2019:i:4:d:10.1007_s00180-019-00887-x