Adjusted quantile residual for generalized linear models
Juliana Scudilio () and
Gustavo H. A. Pereira
Additional contact information
Juliana Scudilio: University of São Paulo
Gustavo H. A. Pereira: Federal University of São Carlos
Computational Statistics, 2020, vol. 35, issue 1, No 23, 399-421
Abstract:
Abstract Generalized linear models are widely used in many areas of knowledge. As in other classes of regression models, it is desirable to perform diagnostic analysis in generalized linear models using residuals that are approximately standard normally distributed. Diagnostic analysis in this class of models are usually performed using the standardized Pearson residual or the standardized deviance residual. The former has skewed distribution and the latter has negative mean, specially when the variance of the response variable is high. In this work, we introduce the adjusted quantile residual for generalized linear models. Using Monte Carlo simulation techniques and two applications, we compare this residual with the standardized Pearson residual, the standardized deviance residual and two other residuals. Overall, the results suggest that the adjusted quantile residual is a better tool for diagnostic analysis in generalized linear models.
Keywords: Diagnostic analysis; Regression models; Residual analysis; Monte Carlo simulation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s00180-019-00896-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:35:y:2020:i:1:d:10.1007_s00180-019-00896-w
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-019-00896-w
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().