Improving accuracy of financial distress prediction by considering volatility: an interval-data-based discriminant model
Rong Guan,
Huiwen Wang and
Haitao Zheng
Additional contact information
Rong Guan: Central University of Finance and Economics
Huiwen Wang: Beihang University
Computational Statistics, 2020, vol. 35, issue 2, No 4, 514 pages
Abstract:
Abstract Financial distress prediction models are much challenged in identifying a distressed company two or more years prior to the occurrence of its actual distress, on the grounds that the distress signal is too weak to be captured at an early stage. The paper innovatively proposes to predict the distressed companies by a factorial discriminant model based on interval data. The main idea is that we use a new data representation, i.e., interval data, to summarize four-quarter financial data, and then build a interval-data-based discriminant model, namely i-score model. Interval data makes both average and volatility information comprehensively included in the proposed prediction model, which is expected to improve prediction performance on the distressed companies. A comparison based on a real data case from China’s stock market is conducted. The i-score model is compared with five commonly used models that are based on numerical data. The empirical study shows that i-score model is more accurate and more reliable in identification of companies in high risk of financial distress in advance of 2 years.
Keywords: Financial distress; Prediction; Interval data; Quarterly financial ratio; China’s stock market (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s00180-019-00916-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:35:y:2020:i:2:d:10.1007_s00180-019-00916-9
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-019-00916-9
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().