Efficient inference in state-space models through adaptive learning in online Monte Carlo expectation maximization
Donna Henderson and
Gerton Lunter ()
Additional contact information
Donna Henderson: University of Oxford
Gerton Lunter: Unversity of Oxford
Computational Statistics, 2020, vol. 35, issue 3, No 17, 1319-1344
Abstract:
Abstract Expectation maximization (EM) is a technique for estimating maximum-likelihood parameters of a latent variable model given observed data by alternating between taking expectations of sufficient statistics, and maximizing the expected log likelihood. For situations where sufficient statistics are intractable, stochastic approximation EM (SAEM) is often used, which uses Monte Carlo techniques to approximate the expected log likelihood. Two common implementations of SAEM, Batch EM (BEM) and online EM (OEM), are parameterized by a “learning rate”, and their efficiency depend strongly on this parameter. We propose an extension to the OEM algorithm, termed Introspective Online Expectation Maximization (IOEM), which removes the need for specifying this parameter by adapting the learning rate to trends in the parameter updates. We show that our algorithm matches the efficiency of the optimal BEM and OEM algorithms in multiple models, and that the efficiency of IOEM can exceed that of BEM/OEM methods with optimal learning rates when the model has many parameters. Finally we use IOEM to fit two models to a financial time series. A Python implementation is available at https://github.com/luntergroup/IOEM.git .
Keywords: Stochastic approximation expectation maximization; Sequential Monte Carlo; Latent variable model; Online estimation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-019-00937-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:35:y:2020:i:3:d:10.1007_s00180-019-00937-4
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-019-00937-4
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().