EconPapers    
Economics at your fingertips  
 

An improvement on the efficiency of complete-case-analysis with nonignorable missing covariate data

Jing Sun ()
Additional contact information
Jing Sun: Ludong University

Computational Statistics, 2020, vol. 35, issue 4, No 5, 1636 pages

Abstract: Abstract This paper develops a weighted composite quantile regression method for linear models where some covariates are missing not at random but the missingness is conditionally independent of the response variable. It is known that complete case analysis (CCA) is valid under these missingness assumptions. By fully utilizing the information from incomplete data, empirical likelihood-based weights are obtained to conduct the weighted composite quantile regression. Theoretical results show that the proposed estimator is more efficient than the CCA one if the probability of missingness on the fully observed variables is correctly specified. Besides, the proposed algorithm is computationally simple and easy to implement. The methodology is illustrated on simulated data and a real data set.

Keywords: Missing covariates; Missing not at random; Conditionally independent; Empirical likelihood; Composite quantile regression (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s00180-020-00964-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:35:y:2020:i:4:d:10.1007_s00180-020-00964-6

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-020-00964-6

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:35:y:2020:i:4:d:10.1007_s00180-020-00964-6