Use of the heuristic optimization in the parameter estimation of generalized gamma distribution: comparison of GA, DE, PSO and SA methods
Volkan Soner Özsoy (),
Mehmet Güray Ünsal and
H. Hasan Örkcü
Additional contact information
Volkan Soner Özsoy: Aksaray University
Mehmet Güray Ünsal: Uşak University
H. Hasan Örkcü: Gazi University
Computational Statistics, 2020, vol. 35, issue 4, No 17, 1895-1925
Abstract:
Abstract The generalized gamma distribution (GGD) is a popular distribution because it is extremely flexible. Due to the density function structure of GGD, estimating the parameters of the GGD family by statistical point estimation techniques is a complicated task. In other words, for the parameter estimation, the maximizing likelihood function of GGD is a problematic case. Hence, alternative approaches can be used to obtain estimators of GGD parameters. This paper proposes an alternative parameter estimation method for GGD by using the heuristic optimization approaches such as Genetic Algorithms (GA), Differential Evolution (DE), Particle Swarm Optimization (PSO), and Simulated Annealing (SA). A comparison between different modern heuristic optimization methods applied to maximize the likelihood function for parameter estimation is presented in this paper. The paper also investigates both the performance of heuristic methods and estimation of GGD parameters. Simulations show that heuristic approaches provide quite accurate estimates. In most of the cases, DE has better performance than other heuristics in terms of bias values of parameter estimations. Besides, the usefulness of an alternative parameter estimation method for GGD using the heuristic optimization approach is illustrated with a real data set.
Keywords: Generalized gamma distribution; Maximum likelihood function; Heuristic techniques; Real dataset (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-020-00966-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:35:y:2020:i:4:d:10.1007_s00180-020-00966-4
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-020-00966-4
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().