Estimation in partially linear varying-coefficient errors-in-variables models with missing response variables
Yan-Ting Xiao () and
Fu-Xiao Li
Additional contact information
Yan-Ting Xiao: Xi’an University of Technology
Fu-Xiao Li: Xi’an University of Technology
Computational Statistics, 2020, vol. 35, issue 4, No 6, 1637-1658
Abstract:
Abstract In this paper, a partially linear varying-coefficient model with measurement errors in the nonparametric component as well as missing response variable is studied. Two estimators for the parameter vector and nonparametric function are proposed based on the locally corrected profile least squares method. The first estimator is constructed by using the complete-case data only, and another by using an imputation technique. Both proposed estimators of the parametric component are shown to be asymptotically normal, and the estimators of nonparametric function are proved to achieve the optimal strong convergence rate as the usual nonparametric regression. Some simulation studies are conducted to compare the behavior of these estimators and the results confirm that the estimators based on the imputation technique perform better than the complete-case data estimator in finite samples. Finally, an application to a real data set is illustrated.
Keywords: Partially linear varying-coefficient models; Measurement error; Missing response; Locally corrected profile least squares; Imputation technique (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-020-00967-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:35:y:2020:i:4:d:10.1007_s00180-020-00967-3
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-020-00967-3
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().