Statistical inference for Markov chains with applications to credit risk
Linda Möstel,
Marius Pfeuffer () and
Matthias Fischer
Additional contact information
Linda Möstel: Institute for Statistics and Econometrics
Marius Pfeuffer: Institute for Statistics and Econometrics
Matthias Fischer: Institute for Statistics and Econometrics
Computational Statistics, 2020, vol. 35, issue 4, No 7, 1659-1684
Abstract:
Abstract The focus of this paper is on the derivation of confidence and credibility intervals for Markov chains when discrete-time, continuous-time or discretely observed continuous-time data are available. Thereby, our contribution is threefold: First, we discuss and compare multinomial confidence regions for the rows of discrete-time Markov transition matrices in the light of empirical characteristics of credit rating migrations. Second, we derive an analytical expression for the expected Fisher information matrix of a continuous-time Markov chain which is used to construct credibility intervals using a non-informative Jeffreys prior distribution and a Metropolis-Hastings Algorithm. Third, we concretize profile and estimated/pseudo likelihood based confidence intervals in the continuous-time data settings, which in contrast to asymptotic normality based intervals explicitly consider non-negativity constraints for the parameters. Furthermore, we illustrate the described methods by Moody’s corporate ratings data with exact continuous-time transitions.
Keywords: Transition matrix; Generator matrix; Bootstrap; Jeffreys prior; Metropolis-Hastings algorithm (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s00180-020-00978-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:35:y:2020:i:4:d:10.1007_s00180-020-00978-0
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-020-00978-0
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().