EconPapers    
Economics at your fingertips  
 

Usage of the GO estimator in high dimensional linear models

Murat Genç () and M. Revan Özkale ()
Additional contact information
Murat Genç: Çukurova University
M. Revan Özkale: Çukurova University

Computational Statistics, 2021, vol. 36, issue 1, No 9, 217-239

Abstract: Abstract This paper discusses simultaneous parameter estimation and variable selection and presents a new penalized regression method. The method is based on the idea that the coefficient estimates are shrunken towards a predetermined coefficient vector which represents the prior information. This method can result in smaller length estimates of the coefficients depending on the prior information compared to elastic net. In addition to the establishment of the grouping property, we also show that the new method has the grouping effect when the predictors are highly correlated. Simulation studies and real data example show that the prediction performance of the new method is improved over the well-known ridge, lasso and elastic net regression methods yielding a lower mean squared error and competes about the variable selection under sparse and non-sparse situations.

Keywords: Coordinate descent algorithm; Elastic net; Grouping property; Lasso; Shrinkage; Variable selection (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s00180-020-01001-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:36:y:2021:i:1:d:10.1007_s00180-020-01001-2

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-020-01001-2

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:36:y:2021:i:1:d:10.1007_s00180-020-01001-2