EconPapers    
Economics at your fingertips  
 

A Bayesian quantile regression approach to multivariate semi-continuous longitudinal data

Jayabrata Biswas and Kiranmoy Das ()
Additional contact information
Jayabrata Biswas: Indian Statistical Institute
Kiranmoy Das: Indian Statistical Institute

Computational Statistics, 2021, vol. 36, issue 1, No 10, 260 pages

Abstract: Abstract Quantile regression is a powerful tool for modeling non-Gaussian data, and also for modeling different quantiles of the probability distributions of the responses. We propose a Bayesian approach of estimating the quantiles of multivariate longitudinal data where the responses contain excess zeros. We consider a Tobit regression approach, where the latent responses are estimated using a linear mixed model. The longitudinal dependence and the correlations among different (latent) responses are modeled by the subject-specific vector of random effects. We consider a mixture representation of the Asymmetric Laplace Distribution (ALD), and develop an efficient MCMC algorithm for estimating the model parameters. The proposed approach is used for analyzing data from the health and retirement study (HRS) conducted by the University of Michigan, USA; where we jointly model (i) out-of-pocket medical expenditures, (ii) total financial assets, and (iii) total financial debt for the aged subjects, and estimate the effects of different covariates on these responses across different quantiles. Simulation studies are performed for assessing the operating characteristics of the proposed approach.

Keywords: Longitudinal response; Mixed model; MCMC; Quantile regression; Tobit models; Zero-inflation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s00180-020-01002-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:36:y:2021:i:1:d:10.1007_s00180-020-01002-1

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-020-01002-1

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:36:y:2021:i:1:d:10.1007_s00180-020-01002-1