EconPapers    
Economics at your fingertips  
 

A modified Canny edge detector based on weighted least squares

Xu Qin ()
Additional contact information
Xu Qin: University of Electronic Science and Technology of China

Computational Statistics, 2021, vol. 36, issue 1, No 27, 659 pages

Abstract: Abstract Edge detection is the front-end processing stage in most computer vision and image understanding systems. Among various edge detection techniques, Canny edge detector is the one of most commonly used. In this paper a modified Canny edge detection technique focusing on change of the Sobel operator is proposed. Instead of convolution kernels, the weighted least squares method is utilized to calculate the horizontal and vertical gradient. Experimental results show that the new detector can detect some edges which are not observed in the results using the Canny edge detector.

Keywords: Edge detection; Gradient; Sobel operator; Taylor expansion (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00180-020-01017-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:36:y:2021:i:1:d:10.1007_s00180-020-01017-8

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-020-01017-8

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:36:y:2021:i:1:d:10.1007_s00180-020-01017-8