Finite mixtures of skew Laplace normal distributions with random skewness
Fatma Zehra Doğru () and
Olcay Arslan ()
Additional contact information
Fatma Zehra Doğru: Giresun University
Olcay Arslan: Ankara University
Computational Statistics, 2021, vol. 36, issue 1, No 19, 423-447
Abstract:
Abstract In this paper, the shape mixtures of the skew Laplace normal (SMSLN) distribution is introduced as a flexible extension of the skew Laplace normal distribution which is also a heavy-tailed distribution. The SMSLN distribution includes an extra shape parameter, which controls skewness and kurtosis. Some distributional properties of this distribution are derived. Besides, we propose finite mixtures of SMSLN distributions to model both skewness and heavy-tailedness in heterogeneous data sets. The maximum likelihood estimators for parameters of interests are obtained via the expectation–maximization algorithm. We also give a simulation study and examine a real data example for the numerical illustration of proposed estimators.
Keywords: EM algorithm; Finite mixture model; ML; SMSLN (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s00180-020-01025-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:36:y:2021:i:1:d:10.1007_s00180-020-01025-8
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-020-01025-8
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().