EconPapers    
Economics at your fingertips  
 

Partial possibilistic regression path modeling: handling uncertainty in path modeling

Rosaria Romano () and Francesco Palumbo ()
Additional contact information
Rosaria Romano: University of Naples Federico II
Francesco Palumbo: University of Naples Federico II

Computational Statistics, 2021, vol. 36, issue 1, No 26, 615-639

Abstract: Abstract The paper presents a new insight of a recently proposed method named partial possibilistic regression path modeling. This method combines the principles of path modeling with those of possibilistic regression to model the net of relations among blocks of variables, where a weighted composite summarizes each block. It assumes that randomness can refer back as the measurement error, which is the error in modeling the relations between the observed variables and the corresponding composite, and the vagueness to the structural error, which is the uncertainty in modeling the relations among the composites behind each block of variables. The comparison of the proposed method with a classical composite-based path model is based on a simulation study. A case study on the use of Wikipedia in higher education illustrates a fruitful usability context of the proposed method.

Keywords: Interval data; Randomness–vagueness; Structural equation modeling; Least absolute values (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00180-020-01026-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:36:y:2021:i:1:d:10.1007_s00180-020-01026-7

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-020-01026-7

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:36:y:2021:i:1:d:10.1007_s00180-020-01026-7