Most recent changepoint detection in censored panel data
Hajra Siddiqa (),
Sajid Ali () and
Ismail Shah ()
Additional contact information
Hajra Siddiqa: Quaid-i-Azam University
Sajid Ali: Quaid-i-Azam University
Ismail Shah: Quaid-i-Azam University
Computational Statistics, 2021, vol. 36, issue 1, No 22, 515-540
Abstract:
Abstract This study aims to detect the most recent changepoint in censored panel data by ignoring dependence within and between segments as well as taking into account the serial autocorrelation. A comparison of different methods to detect the most recent changepoint for censored data is presented. Different censoring rates such as 20%, 50%, and 90% in the case of right and left censoring while (10%, 10%), (25%, 25%) and (40%, 50%) for interval censoring are considered. Further, we use most recent changepoint (MRC), double cumulative sum binary segmentation, non parametric changepoint detection (ECP), multiple changepoints in multivariate time series, analyzing each series in the panel independently, and analyzing aggregated data (AGG) methods. It is observed that different censoring rates have a significant effect on the detection of changepoints in high dimensional data. It is also noticed that the MRC method outperforms the competing methods considered in this study. In addition to investigating the impact of penalties, the performance of MRC and AGG methods is also compared using water quality data of the Niagara River. Also, a data set related to survival time of stroke patients is also a part of this study. An R package “cpcens” is available in comprehensive R archive network to replicate the results of this article.
Keywords: Change point; Panel censored data; High dimensional data; CUSUM; Binary segmentation; Cost function (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s00180-020-01028-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:36:y:2021:i:1:d:10.1007_s00180-020-01028-5
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-020-01028-5
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().