Spatio-temporal change of support modeling with R
Andrew M. Raim (),
Scott H. Holan (),
Jonathan R. Bradley () and
Christopher K. Wikle ()
Additional contact information
Andrew M. Raim: U.S. Census Bureau
Scott H. Holan: University of Missouri
Jonathan R. Bradley: Florida State University
Christopher K. Wikle: University of Missouri
Computational Statistics, 2021, vol. 36, issue 1, No 31, 749-780
Abstract:
Abstract Spatio-temporal change of support methods are designed for statistical analysis on spatial and temporal domains which can differ from those of the observed data. Previous work introduced a parsimonious class of Bayesian hierarchical spatio-temporal models, which we refer to as STCOS, for the case of Gaussian outcomes. Application of STCOS methodology from this literature requires a level of proficiency with spatio-temporal methods and statistical computing which may be a hurdle for potential users. The present work seeks to bridge this gap by guiding readers through STCOS computations. We focus on the R computing environment because of its popularity, free availability, and high quality contributed packages. The stcos package is introduced to facilitate computations for the STCOS model. A motivating application is the American Community Survey (ACS), an ongoing survey administered by the U.S. Census Bureau that measures key socioeconomic and demographic variables for various populations in the United States. The STCOS methodology offers a principled approach to compute model-based estimates and associated measures of uncertainty for ACS variables on customized geographies and/or time periods. We present a detailed case study with ACS data as a guide for change of support analysis in R, and as a foundation which can be customized to other applications.
Keywords: American Community Survey; Areal data; Basis functions; Bayesian statistics; Model-based estimates; Official statistics (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s00180-020-01029-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:36:y:2021:i:1:d:10.1007_s00180-020-01029-4
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-020-01029-4
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().