An efficient algorithm for joint feature screening in ultrahigh-dimensional Cox’s model
Xiaolin Chen,
Catherine Chunling Liu and
Sheng Xu ()
Additional contact information
Xiaolin Chen: Qufu Normal University
Catherine Chunling Liu: The Hong Kong Polytechnic University
Sheng Xu: The Hong Kong Polytechnic University
Computational Statistics, 2021, vol. 36, issue 2, No 5, 885-910
Abstract:
Abstract The Cox model is an exceedingly popular semiparametric hazard regression model for the analysis of time-to-event accompanied by explanatory variables. Within the ultrahigh-dimensional data setting, not like the marginal screening strategy, there is a joint feature screening method based on the partial likelihood of the Cox model but it leaves computational feasibility unsolved. In this paper, we develop an enhanced iterative hard-thresholding algorithm by adapting the non-monotone proximal gradient method under the Cox model. The proposed algorithm is efficient because it is computationally both effective and fast. Meanwhile, our proposed algorithm begins with a LASSO initial estimator rather than the naive zero initial and still enjoys sure screening in theory and further enhances the computational efficiency in practice. We also give a rigorous theory proof. The advantage of our proposed work is demonstrated by numerical studies and illustrated by the diffuse large B-cell lymphoma data example.
Keywords: Cox’s model; LASSO initial; Locally Lipschitz optimization; Non-monotone proximal gradient; Joint feature screening (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-020-01032-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:36:y:2021:i:2:d:10.1007_s00180-020-01032-9
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-020-01032-9
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().