EconPapers    
Economics at your fingertips  
 

Outlier detection under a covariate-adjusted exponential regression model with censored data

Yingli Pan, Zhan Liu () and Guangyu Song
Additional contact information
Yingli Pan: Hubei University
Zhan Liu: Hubei University
Guangyu Song: Hubei University

Computational Statistics, 2021, vol. 36, issue 2, No 8, 976 pages

Abstract: Abstract Exponential regression models with censored data are most widely used in practice. In the modeling process, there exist situations where the covariates are not directly observed but are observed after being contaminated by unknown functions of an observable confounder in a multiplicative manner. The problem of outlier detection is a fundamental and important problem in applied statistics. In this paper, we use a nonparametric regression method to adjust the covariates and recast the outlier detection issue into a high-dimensional regularization regression issue in the covariate-adjusted exponential regression model with censored data. We propose a smoothly clipped absolute deviation (SCAD) penalized likelihood method to detect the possible outliers, which features that the proposed method can simultaneously deal with outlier detection and estimations for the regression coefficients. The coordinate descent algorithm is employed to facilitate computation. Simulation studies are conducted to evaluate the finite-sample performance of our proposed method. An application to a German breast cancer study demonstrates the utility of the proposed method in practice.

Keywords: Outlier diagnosis; Contaminated covariate; SCAD; Coordinate descent algorithm (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00180-020-01052-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:36:y:2021:i:2:d:10.1007_s00180-020-01052-5

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-020-01052-5

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:36:y:2021:i:2:d:10.1007_s00180-020-01052-5