Bayesian Multiple Change-Points Detection in a Normal Model with Heterogeneous Variances
Sang Gil Kang (),
Woo Dong Lee () and
Yongku Kim ()
Additional contact information
Sang Gil Kang: Sangji University
Woo Dong Lee: Daegu Haany University
Yongku Kim: Kyungpook National University
Computational Statistics, 2021, vol. 36, issue 2, No 25, 1365-1390
Abstract:
Abstract This study considers the problem of multiple change-points detection. For this problem, we develop an objective Bayesian multiple change-points detection procedure in a normal model with heterogeneous variances. Our Bayesian procedure is based on a combination of binary segmentation and the idea of the screening and ranking algorithm (Niu and Zhang in Ann Appl Stat 6:1306–1326, 2012). Using the screening and ranking algorithm, we can overcome the drawbacks of binary segmentation, as it cannot detect a small segment of structural change in the middle of a large segment or segments of structural changes with small jump magnitude. We propose a detection procedure based on a Bayesian model selection procedure to address this problem in which no subjective input is considered. We construct intrinsic priors for which the Bayes factors and model selection probabilities are well defined. We find that for large sample sizes, our method based on Bayes factors with intrinsic priors is consistent. Moreover, we compare the behavior of the proposed multiple change-points detection procedure with existing methods through a simulation study and two real data examples.
Keywords: Bayes factor; Binary segmentation; Intrinsic prior; Multiple change-points; Screening and ranking algorithm (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-020-01054-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:36:y:2021:i:2:d:10.1007_s00180-020-01054-3
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-020-01054-3
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().