EconPapers    
Economics at your fingertips  
 

A partial least squares approach for function-on-function interaction regression

Ufuk Beyaztas () and Han Lin Shang
Additional contact information
Ufuk Beyaztas: Piri Reis University

Computational Statistics, 2021, vol. 36, issue 2, No 6, 939 pages

Abstract: Abstract A partial least squares regression is proposed for estimating the function-on-function regression model where a functional response and multiple functional predictors consist of random curves with quadratic and interaction effects. The direct estimation of a function-on-function regression model is usually an ill-posed problem. To overcome this difficulty, in practice, the functional data that belong to the infinite-dimensional space are generally projected into a finite-dimensional space of basis functions. The function-on-function regression model is converted to a multivariate regression model of the basis expansion coefficients. In the estimation phase of the proposed method, the functional variables are approximated by a finite-dimensional basis function expansion method. We show that the partial least squares regression constructed via a functional response, multiple functional predictors, and quadratic/interaction terms of the functional predictors is equivalent to the partial least squares regression constructed using basis expansions of functional variables. From the partial least squares regression of the basis expansions of functional variables, we provide an explicit formula for the partial least squares estimate of the coefficient function of the function-on-function regression model. Because the true forms of the models are generally unspecified, we propose a forward procedure for model selection. The finite sample performance of the proposed method is examined using several Monte Carlo experiments and two empirical data analyses, and the results were found to compare favorably with an existing method.

Keywords: Basis function; Function-on-function regression; Functional partial least squares; Interaction effects; Quadratic term (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s00180-020-01058-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:36:y:2021:i:2:d:10.1007_s00180-020-01058-z

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-020-01058-z

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-22
Handle: RePEc:spr:compst:v:36:y:2021:i:2:d:10.1007_s00180-020-01058-z