Bayesian spectral density estimation using P-splines with quantile-based knot placement
Patricio Maturana-Russel () and
Renate Meyer
Additional contact information
Patricio Maturana-Russel: Auckland University of Technology
Renate Meyer: University of Auckland
Computational Statistics, 2021, vol. 36, issue 3, No 24, 2055-2077
Abstract:
Abstract This article proposes a Bayesian approach to estimating the spectral density of a stationary time series using a prior based on a mixture of P-spline distributions. Our proposal is motivated by the B-spline Dirichlet process prior of Edwards et al. (Stat Comput 29(1):67–78, 2019. https://doi.org/10.1007/s11222-017-9796-9 ) in combination with Whittle’s likelihood and aims at reducing the high computational complexity of its posterior computations. The strength of the B-spline Dirichlet process prior over the Bernstein–Dirichlet process prior of Choudhuri et al. (J Am Stat Assoc 99(468):1050–1059, 2004. https://doi.org/10.1198/016214504000000557 ) lies in its ability to estimate spectral densities with sharp peaks and abrupt changes due to the flexibility of B-splines with variable number and location of knots. Here, we suggest to use P-splines of Eilers and Marx (Stat Sci 11(2):89–121, 1996. https://doi.org/10.1214/ss/1038425655 ) that combine a B-spline basis with a discrete penalty on the basis coefficients. In addition to equidistant knots, a novel strategy for a more expedient placement of knots is proposed that makes use of the information provided by the periodogram about the steepness of the spectral power distribution. We demonstrate in a simulation study and two real case studies that this approach retains the flexibility of the B-splines, achieves similar ability to accurately estimate peaks due to the new data-driven knot allocation scheme but significantly reduces the computational costs.
Keywords: P-splines; B-splines; Bernstein–Dirichlet process prior; Spectral density estimation; Whittle likelihood (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s00180-021-01066-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:36:y:2021:i:3:d:10.1007_s00180-021-01066-7
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-021-01066-7
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().