EconPapers    
Economics at your fingertips  
 

A comparison of optimization solvers for log binomial regression including conic programming

Florian Schwendinger (), Bettina Grün and Kurt Hornik
Additional contact information
Florian Schwendinger: Wirtschaftsuniversität Wien
Bettina Grün: Wirtschaftsuniversität Wien
Kurt Hornik: Wirtschaftsuniversität Wien

Computational Statistics, 2021, vol. 36, issue 3, No 9, 1754 pages

Abstract: Abstract Relative risks are estimated to assess associations and effects due to their ease of interpretability, e.g., in epidemiological studies. Fitting log-binomial regression models allows to use the estimated regression coefficients to directly infer the relative risks. The estimation of these models, however, is complicated because of the constraints which have to be imposed on the parameter space. In this paper we systematically compare different optimization algorithms to obtain the maximum likelihood estimates for the regression coefficients in log-binomial regression. We first establish under which conditions the maximum likelihood estimates are guaranteed to be finite and unique, which allows to identify and exclude problematic cases. In simulation studies using artificial data we compare the performance of different optimizers including solvers based on the augmented Lagrangian method, interior-point methods including a conic optimizer, majorize-minimize algorithms, iteratively reweighted least squares and expectation-maximization algorithm variants. We demonstrate that conic optimizers emerge as the preferred choice due to their reliability, lack of requirement to tune hyperparameters and speed.

Keywords: Log-binomial regression; Relative risk; Optimization; Conic programming (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00180-021-01084-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:36:y:2021:i:3:d:10.1007_s00180-021-01084-5

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-021-01084-5

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:36:y:2021:i:3:d:10.1007_s00180-021-01084-5