EconPapers    
Economics at your fingertips  
 

Mixture cure rate models with neural network estimated nonparametric components

Yujing Xie () and Zhangsheng Yu ()
Additional contact information
Yujing Xie: Shanghai Jiao Tong University
Zhangsheng Yu: Shanghai Jiao Tong University

Computational Statistics, 2021, vol. 36, issue 4, No 6, 2467-2489

Abstract: Abstract Survival data including potentially cured subjects are common in clinical studies and mixture cure rate models are often used for analysis. The non-cured probabilities are often predicted by non-parametric, high-dimensional, or even unstructured (e.g. image) predictors, which is a challenging task for traditional nonparametric methods such as spline and local kernel. We propose to use the neural network to model the nonparametric or unstructured predictors’ effect in cure rate models and retain the proportional hazards structure due to its explanatory ability. We estimate the parameters by Expectation–Maximization algorithm. Estimators are showed to be consistent. Simulation studies show good performance in both prediction and estimation. Finally, we analyze Open Access Series of Imaging Studies data to illustrate the practical use of our methods.

Keywords: Consistency; Deep learning; EM algorithm; Survival analysis (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s00180-021-01086-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:36:y:2021:i:4:d:10.1007_s00180-021-01086-3

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-021-01086-3

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:36:y:2021:i:4:d:10.1007_s00180-021-01086-3