EconPapers    
Economics at your fingertips  
 

Statistical inference for mixture GARCH models with financial application

Maddalena Cavicchioli ()
Additional contact information
Maddalena Cavicchioli: University of Modena and Reggio E.

Computational Statistics, 2021, vol. 36, issue 4, No 12, 2615-2642

Abstract: Abstract In this paper we consider mixture generalized autoregressive conditional heteroskedastic models, and propose a new iteration algorithm of type EM for the estimation of model parameters. The maximum likelihood estimates are shown to be consistent, and their asymptotic properties are investigated. More precisely, we derive simple expressions in closed form for the asymptotic covariance matrix and the expected Fisher information matrix of the ML estimator. Finally, we study the model selection and propose testing procedures. A simulation study and an application to financial real-series illustrate the results.

Keywords: Markov switching models; Mixture GARCH models; Estimation; Fisher information matrix; Volatility; model selection (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00180-021-01092-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:36:y:2021:i:4:d:10.1007_s00180-021-01092-5

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-021-01092-5

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:36:y:2021:i:4:d:10.1007_s00180-021-01092-5