EconPapers    
Economics at your fingertips  
 

Estimation of the association parameters in hierarchically clustered survival data by nested Archimedean copula functions

Mirza Nazmul Hasan () and Roel Braekers
Additional contact information
Mirza Nazmul Hasan: Universiteit Hasselt
Roel Braekers: Universiteit Hasselt

Computational Statistics, 2021, vol. 36, issue 4, No 17, 2755-2787

Abstract: Abstract Statisticians are frequently confronted with highly complex data such as clustered data, missing data or censored data. In this manuscript, we consider hierarchically clustered survival data. This type of data arises when a sample consists of clusters, and each cluster has several, correlated sub-clusters containing various, dependent survival times. Two approaches are commonly used to analysis such data and estimate the association between the survival times within a cluster and/or sub-cluster. The first approach is by using random effects in a frailty model while a second approach is by using copula models. Hereby we assume that the joint survival function is described by a copula function evaluated in the marginal survival functions of the different individuals within a cluster. In this manuscript, we introduce a copula model based on a nested Archimedean copula function for hierarchical survival data, where both the clusters and sub-clusters are allowed to be moderate to large and varying in size. We investigate one-stage, two-stage and three-stage parametric estimation procedures for the association parameters in this model. In a simulation study we check the finite sample properties of these estimators. Furthermore we illustrate the methods on a real life data-set on Chronic Granulomatous Disease.

Keywords: Hierarchical survival data; Nested Archimedean copulas; Frailty models; Varying cluster size; One-stage estimation; Two-stage estimation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00180-021-01094-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:36:y:2021:i:4:d:10.1007_s00180-021-01094-3

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-021-01094-3

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:36:y:2021:i:4:d:10.1007_s00180-021-01094-3