EconPapers    
Economics at your fingertips  
 

Algorithm for error-free determination of the variance of all contiguous subsequences and fixed-length contiguous subsequences for a sequence of industrial measurement data

Andrzej Chmielowiec ()
Additional contact information
Andrzej Chmielowiec: Rzeszow University of Technology

Computational Statistics, 2021, vol. 36, issue 4, No 19, 2813-2840

Abstract: Abstract The article presents an algorithm for fast and error-free determination of statistics such as the arithmetic mean and variance of all contiguous subsequences and fixed-length contiguous subsequences for a sequence of industrial measurement data. Additionally, it shows that both floating-point and integer representation can be used to perform this kind of statistical calculations. The author proves a theorem on the number of bits of precision that an arithmetic type must have to guarantee error-free determination of the arithmetic mean and variance. The article also presents the extension of Welford’s formula for determining variance for the sliding window method—determining the variance of fixed-length contiguous subsequences. The section dedicated to implementation tests shows the running times of individual algorithms depending on the arithmetic type used. The research shows that the use of integers in calculations makes the determination of the aforementioned statistics much faster.

Keywords: Variance; Arithmetic mean; Error-free variance computation; Measurement data representation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s00180-021-01096-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:36:y:2021:i:4:d:10.1007_s00180-021-01096-1

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-021-01096-1

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:compst:v:36:y:2021:i:4:d:10.1007_s00180-021-01096-1